

C7000 CARBON FRICTION MATERIAL

Material Description

C7000™ has a highly porous structure of carbon fibres and granulated particles that provides excellent heat resistance and superior heat dissipation.

- High energy capability
- Close to 1:1 relationship between static to dynamic coefficient of friction giving smooth engagement & quiet operation
- Stable coefficient of friction over speed and pressure
- Superior wear resistance
- Good oil compatibility

Typical Applications

High load differentials, clutches & brakes

Mating Material

- Steel
- Surface finish < 0.5µm Ra (20µin CLA)
- No special hardness requirements

Average Friction Coefficient (wet)

Static: 0.105 - 0.115Dynamic: 0.100 - 0.110

Recommended Max Load

Dynamic pressure: 6 N/mm² (870 psi)
Rubbing speed: 17 m/s (56 Ft/sec)
Specific power: 4 W/mm² (3.4 HP/in²)

Micro Structure of C7000 x 50

Oil Grooving

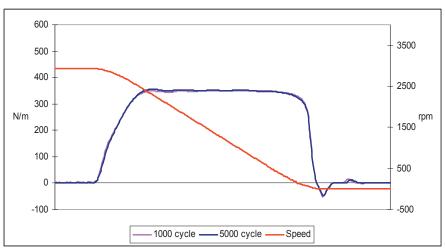
- Multi-pass tangential groove patterns in variety of configurations
- Grooves can either be pressed or machined

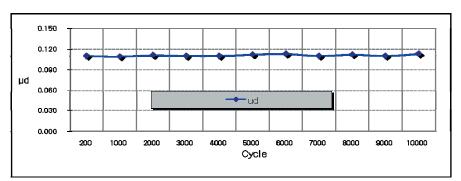
Dimensions

• Friction thickness: 0.70 mm (0.028")

Friction diameter:
 Unlimited diameter in segment form
 Non-segmented: 200 mm (8")

The above data is taken from specific test parameters therefore results can vary in different application conditions


C7000 - 2 - 300909



C7000

CARBON FRICTION MATERIAL

TORQUE TRACE

CHANGE OF DYNAMIC COEFFICIENT OF FRICTION

Total cycles	10,000 cycles
Inertia	0.04 kgf·m·sec^2
Dynamic rpm	2940
Friction facing dimensions	Ø133.5mm × Ø99.0mm
Friction surfaces	4
Unit energy	0.74J/□
Unit pressure	2.0 Mpa
Oil type	TO-4
Oil temperature	90°C(±5°C)
Arrangement	pDpDp

TEST CONDITION